

Technological and Higher Education Institute of Hong Kong 香港高等教育科技學院

The Estimation of Running Economy and Motion Analysis of **Runners Using Machine Learning on MotionMetrix Data**

Miss THAPA Celcia, BSocSc (Hons) in Sports and Recreation Management, **Department of Sport and Recreation**

0.1614

Supervisor: Mr HO Man Kit Indy, Assistant Professor

BACKGROUND

• For most athletes, achieving the shortest race time is their ultimate goal and one of the key determinants is running economy (RE)

RESULTS	Model Performance Metrics			
		XGB	ANN	SVM
	Cross-validated MAE	3.757	14.206	5.640
	MAE	4.371	9.835	5.267
	RMSE	5.484	13.322	6.756
	Cross-validated MAE MAE RMSE	3.757 4.371 5.484	14.206 9.835 13.322	5.640 5.267 6.756

- Running biomechanics such as the optimal stride length/frequency being \pm 3% of preference range (Moore, 2016)
- MotionMetrix utilises advanced technologies to analyse data (Jaén-Carrillo et al., 2022)

PURPOSE

• To identify the factors influencing optimal running performance and RE

METHODOLOGY

- A quantitative study with the inclusion of machine learning to develop predictive models to predict running performance
- 59 participants (M:44, F:15), aged from 21-53 years old
- Racing experience in at least 10km
- No surgery within the last 12 months

*MAE within the 10% potential error range 4.931 minutes (<5 mins) for both genders

- The study demonstrated that RE alone is not substantial enough to predict running performance
- May adjust the pacing strategy according to peak velocity and desirable velocity (Lima-Silva et al., 2009)
- Efficient strides promotes better energy transfer
 - \rightarrow Improves RE (Pizzuto et al., 2019; Moore, 2016)
- There seems to be no direct influence on RE, ultimately it all narrows down to the technique of the athletes

Limitations

Clinical Tests:

- 1. Foot Posture Index (FPI) (Cowley & Marsden, 2013)
- 2. Weight-bearing Lunge (Ankle Dorsiflexion ROM) (Konor et al., 2012; Adillón et al., 2021)
- 3. Reactive Strength Index (RSI) (Markwick et al., 2015; Haynes et al., 2019)
- 4. Single-leg Squat (McGovern et al., 2019)
- 5. Hip Abduction Strength (Thorborg et al., 2010)

- Small sample size
- Machine learning models learn better with bigger sample size (Training & Testing set)

PRACTICAL APPLICATION

- The selected features such as training pace can be retrained to improve RE
- Proper technique must not be neglected to promote RE

Member of **VTC** Group