

The Effects of Foam Roller Density on Flexibility Enhancement and Muscle Characteristics on the Quadricep and Calf Muscles

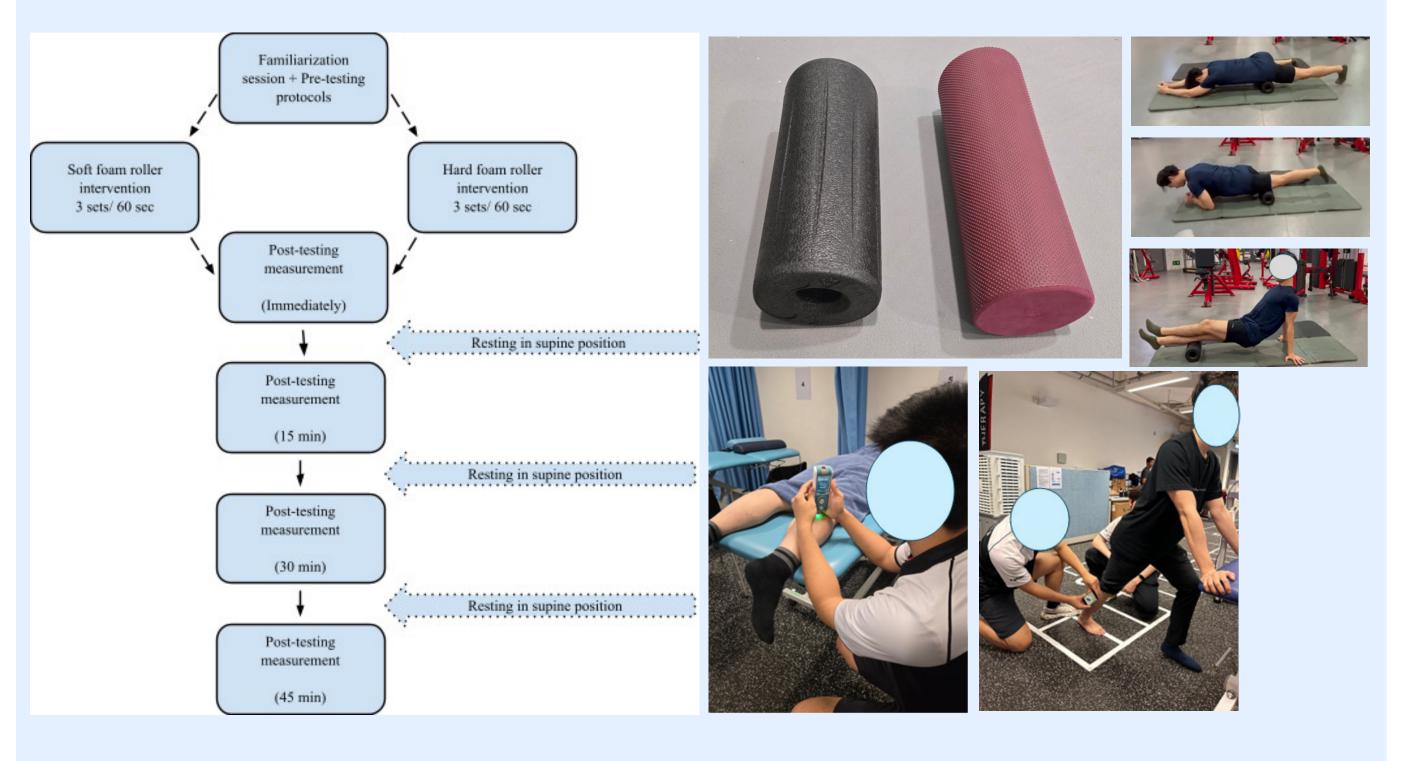
Miss KAUR Gurkeerat, BSocSc (Hons) in Sports and Recreation Management, Department of Sport and Recreation

Specialisation: Sports Therapy

Supervisor: Mr Freeman KWOK, Lecturer

Background

Flexibility, defined as the range of motion (ROM) achievable without injury (Pate et al., 2012) or undue stress on musculotendinous units (Medeiros & Martini, 2018), is influenced by age, activity level, muscle elasticity, and tone (Behm, 2024). It plays a critical role in sports by enhancing performance (e.g. speed, agility, and power), reducing injury risk, and aiding rehabilitation (Konrad et al., 2021). Key muscle properties like retention (maintaining mass/function), stiffness (resistance to stretching), and tone (readiness for action) directly impact movement efficiency and injury prevention. Managing these properties through strategies like foam rolling (FR) may optimize muscle function (Konrad et al., 2019; Nakamura et al., 2021).


Foam rolling, a self-myofascial release (SMR) technique, uses tools of varying densities to reduce stiffness, alleviate soreness, and improve recovery by targeting soft-tissue adhesions and increasing blood flow (Zhang et al., 2020; Wiewelhove et al., 2019). However, the impact of foam roller densities on acute flexibility remains understudied, and the mechanisms behind SMR's benefits lack robust evidence (Su et al., 2017; Ferreira et al., 2022). This study addresses these gaps to inform evidence-based training and recovery protocols.

Purpose

This study investigates how foam roller densities (soft vs. hard) acutely affect flexibility, muscle stiffness, and ROM duration enhancement in the quadriceps and calf muscles.

Methodology

- Randomized pre-test/post-test trial comparing soft (19.5A) vs. hard (43A) foam rollers.
- Measurements taken at baseline, immediately post-intervention, and at 15, 30, and 45 minutes.
- 48 healthy adults (18–64 years) with prior foam-rolling experience.
- 3 sets × 60 seconds per muscle (quadriceps/calf) at 20 beats per minute (metronome-guided).
- Standardized rolling motion (proximal to distal) with 30-second rests between sets.

Results

Comparison	Mean Difference	Standard Error (SE)	95% CI (Lower- Upper)	p-value	Comparison	Mean Difference	Standard Error (SE)	95% CI (Lower- Upper)	p-value
Baseline vs mmediate	-2.422*	0.68	[-4.4, -3.8]	0.010	Baseline vs Immediate	-2.737*	0.68	[-4.7, -0.7]	0.003
Baseline vs 15 ninute	-1.537	0.67	[-3.5,0.45]	0.272	Baseline vs 15 minute	-1.364	0.67	[-3.3, 0.6]	0.489
Baseline vs 30 ninute	-2.007	0.72	[-4.1,0.14]	0.084	Baseline vs 30 minute	-1.897	0.72	[-4, 0.2]	0.124
Baseline vs 45 ninute	-1.35D	0.79	[-3.7,1]	0.976	Baseline vs 45 minute	-1.515	0.79	[-3.8, 0.8]	0.640
nterval; Bonferror	•	ror, MD= Mean Diffultiple comparison; S OM intervention			Interval; Bonferroni	adjustment for mu	•	erence CI= Confiden	
omparison	MD	SE	95% CI	p-value	Comparison	MD	SE	95% CI	p-value
aseline vs nmediate	-4.547*	1.50	[-8.9,120]	0.040	Baseline vs Immediate	-3.971	1.50	[-8.3, 0.4]	0.112
aseline vs 15 inute	-3.629	1.55	[-8.2, .950]	0.238	Baseline vs 15 minute	-5.094*	1.55	[-9.6, -0.5]	0.020
aseline vs 30 inute	-3.650	1.53	[-8.16, .869]	0.214	Baseline vs 30 minute	-3.542	1.53	[-8, 0.9]	0.254
aseline vs 45 inute	707	2.61	[-8.4, 6.99]	1.000	Baseline vs 45 minute	-4.076	2.61	[-11, 3.6]	1.000
terval; Bonferron	i adjustment for mu	ror, MD= Mean Dif Itiple comparison; S Gastrocnemius inter	Significant at p-valu		Interval; Bonferron	i adjustment for n		ifference CI= Confi ; Significant at p-val tervention	
Comparison	MD	SE	95% CI	p-value	Comparison	MD	SE	95% CI	p-value
aseline vs nmediate	14.931*	4.3	[2.1, 27]	0.013	Baseline vs Immediate	18.667*	5.05	[3.7, 33]	0.006
aseline vs 15 ninute	16.667*	5.4	[0.71, 32]	0.035	Baseline vs 15 minute	14.417	5.84	[-2.8, 31]	0.174
aseline vs 30 ninute	12.694	5.1	[-2.5, 27]	0.180	Baseline vs 30 minute	16.958*	5.12	[1.8, 32]	0.018
aseline vs 45	14.167	5.2	[-1.3, 29]	0.098	Baseline vs 45 minute	16.542*	5.38	[0.6, 32]	0.036

Discussion

- This study concluded that both densities of foam roller (soft and hard) induce an acute increase in lower limb range of motion (ROM), a finding that matches previous literature (Nakamura et al., 2021). The effects of both foam rollers on flexibility were equal with regard to magnitude and duration, supporting previous systematic reviews (Wilke et al., 2019).
- The soft roller offered a significant decrease in calf muscle stiffness (medial and lateral gastrocnemius) whereas the hard roller showed no such effect. This finding goes against the assumption that a greater amount of pressure gives larger tissue changes (Baumgart et al., 2019) and thus suggests that neural mechanisms may have some overriding influence, perhaps through decreased guarding with softer pressure (Kerautret et al., 2021). No significant changes were observed in rectus femoris stiffness, a change which might be expected for larger muscle groups (Konrad et al., 2022).
- Despite flexibility improvements being transient (generally disappearing within 15 to 30 minutes) (Nakamura et al., 2021), a decrease in stiffness through the soft roller was recorded for longer on the lateral gastrocnemius (up to 45 minutes), which may imply that differences exist between the mechanisms or existence of effects when compared with flexibility changes (Ingram et al., 2025; Garcia-Bernal et al., 2021).

Limitations:

- Study examined only acute effects from a single session.
- Did not analyze the influence of individual factors (age, gender, BMI, fitness).
- Applied pressure was not measured.
- Findings are limited to healthy individuals familiar with foam rolling.

Future Research:

- 1. Explore the interaction of individual characteristics and applied pressure with roller density effects.
- 2. Investigate the underlying neural mechanisms using simultaneous measurements.
- 3. Examine a wider range of densities, textures, durations, and the cumulative effects of regular use.

Practical Application

For greater adaptability, both soft and hard rollers are applicable; so the choice is comfortdependent. For the acute reduction of calf stiffness, soft rollers are the best. For flexibility, roll just before activity, or for stiffness, roll nearer to activity or during recovery. The effects are specific to the muscle; big muscles such as quadriceps may not show changes in stiffness. When reduction of stiffness is desired, go for comfort and less intense pressure. So, choose the rollers and pressure according to your tolerance levels. The ability of soft rollers to decrease calf stiffness might be beneficial in rehabilitation.

References

Baumgart, C., Freiwald, J., Kühnemann, M., Hotfiel, T., Hüttel, M., & Hoppe, M. (2019). Foam Rolling of the Calf and Acute Effects on Vertical Jump Height and Muscle Stiffness. Sports, 7(1), 27. https://doi.org/10.3390/sports7010027

Behm, D. (2024). The Science and Physiology of Flexibility and Stretching. In Routledge eBooks (2nd ed.). Taylor & Francis. https://doi.org/10.4324/9781032709086 Ferreira, R. M., Martins, P. N., & Goncalves, R. S. (2022). Effects of Self-myofascial Release Instruments on Performance and Recovery: An Umbrella Review and Meta-Analysis. Frontiers in Physiology, 12. https://doi.org/10.3389/fphys.2021.720531

Garcia-Bernal, M.-I., Heredia-Rizo, A. M., Gonzalez-Garcia, P., Cortés-Vega, M.-D., & Casuso-Holgado, M. J. (2021). Validity and reliability of myotonometry for assessing muscle viscoelastic properties in patients with stroke: a systematic review and meta-analysis. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-84656-1 Ingram, L. A., Tomkinson, G. R., d'Unienville, N. M. A., Gower, B., Gleadhill, S., Boyle, T., & Bennett, H. (2025). Mechanisms Underlying Range of Motion Improvements Following Acute and Chronic Static Stretching: A Systematic Review, Meta-analysis and Multivariate Meta-regression. Sports Medicine, 10.1007/s40279-02502204-7. https://doi.org/10.1007/s40279-025-02204-7

Kerautret, Y., Guillot, A., Daligault, S., & Di Rienzo, F. (2021). Foam Rolling Elicits Neuronal Relaxation Patterns Distinct from Manual Massage: A Randomized Controlled Trial. Brain Sciences, 11(6), 818. https://doi.org/10.3390/brainsci11060818 Konrad, A., Nakamura, M., Tilp, M., Donti, O., & Behm, D. G. (2022). Foam Rolling Training Effects on Range of Motion: A Systematic Review and Meta-Analysis. Sports Medicine, 52(10), 2523–2535. https://doi.org/10.1007/s40279-022-01699-8

Zhang, Q., Trama, R., Fouré, A., & Hautier, C. A. (2020). The Immediate Effects of Self-Myofacial Release on Flexibility, Jump Performance and Dynamic Balance Ability. Journal of Human Kinetics, 75(1), 139–148. https://doi.org/10.2478/hukin-2020-0043

Medeiros, D. M., & Martini, T. F. (2018). Chronic effect of different types of stretching on ankle dorsiflexion range of motion: Systematic review and meta-analysis. The Foot, 34, 28–35. https://doi.org/10.1016/j.foot.2017.09.006

Nakamura, M., Onuma, R., Kiyono, R., Yasaka, K., Sato, S., Yahata, K., Fukaya, T., & Konrad, A. (2021). The Acute and Prolonged Effects of Different Durations of Foam Rolling on Range of Motion, Muscle Stiffness, and Muscle Strength. Journal of Sports Science and Medicine, 20(1), 62–68. https://doi.org/10.52082/jssm.2021.62 Pate, R., Oria, M., Pillsbury, L., Food and Nutrition Board, & Institute of Medicine. (2012, December 10). Health-Related Fitness Measures for Youth: Flexibility. Nih.gov; National Academies Press (US). https://www.ncbi.nlm.nih.gov/books/NBK241323/

Su, H., Chang, N.-J., Wu, W.-L., Guo, L.-Y., & Chu, I-Hua. (2017). Acute Effects of Foam Rolling, Static Stretching During Warm-ups on Muscular Flexibility and Strength in Young Adults. Journal of Sport Rehabilitation, 26(6), 469–477. https://doi.org/10.1123/jsr.2016-0102

Wiewelhove, T., Döweling, A., Schneider, C., Hottenrott, L., Meyer, T., Kellmann, M., Pfeiffer, M., & Ferrauti, A. (2019). A Meta-Analysis of the Effects of Foam Rolling on Performance and Recovery. Frontiers in Physiology, 10(376). https://doi.org/10.3389/fphys.2019.00376 Wilke, J., Müller, A.-L., Giesche, F., Power, G., Ahmedi, H., & Behm, D. G. (2019). Acute Effects of Foam Rolling on Range of Motion in Healthy Adults: A Systematic Review with Multilevel Meta-analysis. Sports Medicine, 50(2). https://doi.org/10.1007/s40279-019-01205-7

Member of **VTC** Group